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Modeling tabular icebergs submerged in the ocean
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Abstract Large tabular icebergs calved from Antarctic ice shelves have long lifetimes (due to their large
size), during which they drift across large distances, altering ambient ocean circulation, bottom-water for-
mation, sea-ice formation, and biological primary productivity in the icebergs’ vicinity. However, despite
their importance, the current generation of ocean circulation models usually do not represent large tabular
icebergs. In this study, we develop a novel framework to model large tabular icebergs submerged in the
ocean. In this framework, tabular icebergs are represented by pressure-exerting Lagrangian elements that
drift in the ocean. The elements are held together and interact with each other via bonds. A breaking of
these bonds allows the model to emulate calving events (i.e., detachment of a tabular iceberg from an ice
shelf) and tabular icebergs breaking up into smaller pieces. Idealized simulations of a calving tabular ice-
berg, its drift, and its breakup demonstrate capabilities of the developed framework.

Plain Language Summary Large tabular icebergs break away from ice shelves around Antarctica,
and drift into the ocean. As the icebergs move, they melt, which injects freshwater into the ocean. This
freshwater can promote sea-ice growth, affect deep-water formation and alter ocean temperatures and sal-
inities. In this way icebergs play an important part in the climate system, and need to be modeled accu-
rately. However, the current generation of iceberg models is unable to model large tabular icebergs.In this
paper, we develop a new model which can simulate the movement of large tabular icebergs drifting in the
ocean. Most previous iceberg models treat iceberg as point particles which do not occupy any physical
space. In our model, we represent iceberg using element which do occupy physical space, and can interact
with the ocean and other elements more realistically. We then create large tabular icebergs by bonding
together many smaller elements to form large structures. This allows us to simulate the movement of larger
tabular icebergs in the ocean. An advantage of this approach is that by breaking the bonds between ele-
ments, we can simulate an iceberg calving away from an ice shelf, or an iceberg breaking into two or more
parts.

1. Introduction

Large tabular icebergs—pieces of floating ice with horizontal dimensions substantially larger than the verti-
cal dimension—calve infrequently (� every 50 years) from Antarctic or Greenlandic ice shelves [Jacobs
et al., 1992]. Observational estimates suggest that over the past 30 years approximately half of Antarctic ice-
shelf decay is due to iceberg calving, while the other half occurs through ice-shelf melting [Depoorter et al.,
2013; Rignot et al., 2013]. The infrequently calved tabular icebergs (horizontal extent larger than 5 km)
account for more than 90% of the Southern Hemisphere iceberg mass [Tournadre et al., 2016].

After calving, icebergs drift away from their origins, often becoming stuck in sea ice, or grounding on bathy-
metric highs along the Antarctic coast [Lichey and Hellmer, 2001; Dowdeswell and Bamber, 2007]. Large tabu-
lar icebergs extend deep into the water column, and have the potential to disrupt ocean circulation
patterns for months or even years after calving [Robinson et al., 2010; Stern et al., 2015]. The freshwater flux
from iceberg melt impacts ocean hydrography around the iceberg, influencing sea-ice production and
bottom-water formation [Arrigo et al., 2002; Robinson et al., 2010; Nicholls et al., 2009; Fogwill et al., 2016].
Because of their large size, the tabular icebergs have long lifetimes during which they drift over long distan-
ces injecting meltwater along the way and impacting the Southern Ocean state (e.g., hydrography, sea-ice
conditions, etc.) far away from their calving origins [Stern et al., 2016; Rackow et al., 2017]. Meltwater injec-
tion (and the accompanying upwelling) from icebergs can also influence biological productivity by bringing
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nutrients to the surface ocean or changing sea-ice conditions [Arrigo et al., 2002; Vernet et al., 2012; Biddle
et al., 2015]. The increased productivity associated with free-floating tabular icebergs has been linked with
local increases in ocean carbon uptake, potentially large enough to be a significant fraction of the Southern
Ocean carbon sequestration [Smith et al., 2007].

In recent years, there has been an increased interest in iceberg drift and decay. This surge of interest has
been driven by (i) the need to understand polar freshwater cycles in order to create realistic climate change
and sea level projections [Silva et al., 2006; Shepherd and Wingham, 2007; Rignot et al., 2013]; and (ii) the
increased navigation and exploration activities in high-latitude iceberg-filled waters in the Arctic [Pizzolato
et al., 2014; Unger, 2014; Henderson and Loe, 2016]. The increased interest in icebergs has led to the develop-
ment of numerical models of iceberg drift and decay [Mountain, 1980; Bigg et al., 1997; Gladstone et al.,
2001; Kubat et al., 2005], some of which have been included in global General Circulation Models [Martin
and Adcroft, 2010; Marsh et al., 2015]. These iceberg drift models treat icebergs as levitating Lagrangian
point particles, which are advected by the flow, and melt according to parameterizations for iceberg melt.
Here the term levitating refers to the fact the point-particle icebergs do not apply pressure to the ocean sur-
face, and therefore do not displace water. Since icebergs are treated as point particles, iceberg drift models
are mostly suitable for modeling icebergs smaller than an ocean grid cell. Consequently, these models have
mostly been used to represent icebergs smaller than 3.5 km on a global scale [Jongma et al., 2009; Martin
and Adcroft, 2010; Marsh et al., 2015].

Point-particle iceberg drift models are less suitable for modeling larger tabular icebergs, where the size and
structure of the iceberg may be an important feature in determining their drift and decay [Stern et al.,
2016]. They also are not suitable for studying the local effects that icebergs have on the surrounding ocean,
or the small-scale processes that influence iceberg melt and decay [Wagner et al., 2014; Stern et al., 2015].
For these reasons, tabular icebergs are currently not represented in the iceberg drift models used as compo-
nents of climate models, despite accounting for the vast majority of the total Southern Hemisphere iceberg
mass [Tournadre et al., 2016].

Some efforts have been made to modify levitating point-particle icebergs models so that they can be used
to represent tabular icebergs [Lichey and Hellmer, 2001; Hunke et al., 2011; Rackow et al., 2017]. A promising
approach involves integrating ocean properties over the implied iceberg surface area [Rackow et al., 2017]
or implied iceberg depth [Hunke et al., 2011; Merino et al., 2016] when calculating the iceberg forcing (or
applying iceberg melt fluxes), to account for the horizontal and vertical extent of the tabular iceberg. How-
ever, this approach does not account for influence that a submerged iceberg can have on the surrounding
ocean due to its physical presence in the water column. Martin and Adcroft [2010] partially addressed this
by allowing their icebergs to apply pressure to the top-most layer of their layered ocean model. This
approach effectively allowed the icebergs to displace water, therefore making the point-particle icebergs
into ‘‘non-levitating’’ (pressure-exerting) icebergs. A limitation of the Martin and Adcroft [2010] approach is
that the maximum iceberg size is constrained to be smaller than one ocean grid cell, which means that tab-
ular icebergs cannot be represented [Stern et al., 2016]. While it may be possible to combine these two
approaches, at this stage more work is needed before point-particle icebergs can be used to represent tabu-
lar icebergs in climate models. Furthermore, at smaller scales and for regional modeling, it is clear that
modeling tabular icebergs as levitating point particle is not adequate to resolve the complex interactions
between tabular icebergs and the surrounding ocean.

The goal of this study is to develop a new framework to model all kinds of icebergs, where tabular icebergs
are explicitly resolved in the ocean. Our new representation of icebergs aims to include the following key
properties: (i) icebergs should be able to travel large distances within the ocean, (ii) icebergs should melt
and decay as they drift in the ocean, (iii) icebergs should behave as if they have finite extent and should be
able to have any shape and size, (iv) icebergs should be submerged in the ocean so they are no longer levi-
tating, and (v) tabular icebergs should be able to break away from ice shelves or break into smaller pieces.
Properties (i) and (ii) are common to point-particle icebergs models, while properties (iii), (iv), and (v) are
new to the framework developed in this study. A further requirement of the new framework is that the
model should run sufficiently fast to be included in general circulation models used for climate.

In order to allow icebergs to travel large distances, we model the icebergs in a Lagrangian framework (as in
the point particle iceberg drift models described above). However, in our model icebergs are no longer
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treated as point particles that interact with the ocean at a single location. Instead icebergs are given physi-
cal structure, so that they interact with the ocean across multiple ocean grid cells, depress the ocean surface
over a wide area, and can interact with other icebergs (Figure 1). This is done by assigning a finite surface
area and shape to the Lagrangian elements, which allows the elements to behave as if they have a finite
extent. The finite extent of an element is transmitted by the ocean by distributing the element’s weight, sur-
face area, and melt fluxes over multiple ocean grid cells in a way which is consistent with the shape of the
ice element. Finite-extent elements interact with each other via repulsive forces which are applied when
the boundaries of the elements overlap. This prevents the icebergs from piling up on top of one another,
which has been an issue near coastlines in previous point-particle icebergs models.

Large tabular icebergs can then be represented by ‘‘bonding’’ together multiple ice elements into larger
structures using numerical bonds (Figure 1). The numerical bonds hold the ice elements together and allow
a collection of elements to move as a unit. This allows tabular icebergs to drift in the ocean when forced by
ocean currents and wind. An advantage of representing tabular icebergs using numerical bonds is that by
breaking the bonds, we can simulate iceberg calving (e.g., Figure 2), or the response to an iceberg fracturing
into multiple smaller pieces (see supporting information Movies S1 and S2).

The manuscript is organized as follows. Section 2 gives a description of the key aspects of the model devel-
oped in this study. Since this model is a new approach to modeling icebergs, we present technical aspects
of the model. In sections 3 and 4, we demonstrate the capabilities of the model by simulating a tabular ice-
berg detaching from an idealized ice shelf. In a further simulation we break some numerical bonds within
the tabular iceberg to demonstrate an iceberg splitting in two.

2. Model Description

The Kinematic Iceberg Dynamics model (KID) is a Lagrangian particle-based model in that the objects of the
model are Lagrangian elements [Cundall and Strack, 1979; Luding, 2008; Radjai and Dubois, 2011]. Each ele-
ment represents a column of ice that is floating in the ocean and has a position, velocity, mass, and a set of

Figure 1. Schematic showing how tabular icebergs are constructed using Lagrangian elements. (a) Hierarchy of ice elements’ physical structure: (i) Previous iceberg models represent
icebergs using non-interacting point-particle elements; (ii) In the new framework ice elements are given finite extent so that they are able to interact with the ocean across multiple grid
cells, and can interact with other elements; (iii) These finite extent elements can be joined together by numerical bonds (magenta lines) to form larger structures such as tabular icebergs.
(b) Areal photograph of a tabular iceberg with elements superimposed over it to illustrate how the Lagrangian elements can be used to model tabular icebergs. In this schematic, the ice
elements (purple dots) are initialized in a staggered lattice covering the surface area of the iceberg. For purposes of mass aggregation, the ice elements are assumed to have hexagonal
shape (red hexagons). For purposes of element interactions, the ice elements are assumed to be circular (black circles). Elements are initially bonded to adjacent elements using numeri-
cal bonds (magenta lines). These numerical bonds form equilateral triangles which give the shape rigidity. An ocean grid has been included (dashed cyan lines). The background photo
is an areal photograph of iceberg PIIB (Area5 42 km2) taken in Baffin Bay in 2012. A red ship can be identified on the bottom of the photo for scale.
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dimensions, which can evolve in time. The motion of each element is determined by a momentum equation
which is solved in the (Lagrangian) reference frame of the element. The elements experience oceanic and
atmospheric forces, which are either prescribed, or computed by coupling the iceberg model to an ocean/
atmosphere model. The ice elements also interact with one another via attractive and repulsive interactive
forces, and can be bonded together to form larger structures. The angular momentum of the elements is
not modeled explicitly; instead rotational motion of larger structures emerges as a consequence of bond
orientation and collective motion.

In different contexts, the ice elements can be thought to represent individual icebergs, sea-ice flows, or,
when the elements are bonded together, they can represent larger structures such as tabular icebergs or
ice shelves.

The KID model is developed on the code base of an existing iceberg drift model [Martin and Adcroft, 2010;
Stern et al., 2016]. When run with a different set of runtime flags, the model runs as a traditional point-
particle iceberg drift model.

2.1. Equations of Motion
The elements drift in the ocean in response to atmosphere, ocean, and sea-ice drag forces, as well as the
Coriolis force, a wave radiation force, a force due to the sea surface slope and interactive forces with other
elements. The momentum equation for each element is given by

M
D~u
Dt

5~F A1~F W 1~F R1~F C1~F SS1~F SI1~F IA; (1)

where D
Dt is the total (Lagrangian) derivative, M is the mass of the element,~u is the velocity of the element,

and the terms on the right hand side give the forces on the element due to air drag ð~F AÞ, water drag ð~F WÞ,

Figure 2. Snapshots of the sea surface temperature in the tabular iceberg calving simulation. Snapshots are taken (a) 7, (b) 15, and (c) 50 days after calving. Grid cells with ice mass >104

kg are plotted in white, with grey shading indicating thinner ice. The dashed line in Figure 2c shows the location of the vertical transects shown in Figures 8 and 11.
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sea-ice drag ð~F SIÞ, Coriolis force ð~F CÞ, wave radiation force ð~F RÞ, sea surface slope ð~F SSÞ, and interactions
with other elements (~F IA).

When ice elements move alone (without interactions with other elements), they can be thought of as repre-
senting individual (or clusters of) small icebergs, and follow the same equations described in the iceberg
drift model of Martin and Adcroft [2010] (based on the equations outlined in Bigg et al [1997] and Gladstone
et al [2001]). A description of these forces is provided in Appendix A.

In addition to the external forces, the ice elements experience interactive forces due to the presence of
other elements. Two types of interactive forces are included between elements. The first force is a repulsive
force which is applied to elements to prevent them from overlapping the boundaries of the neighboring
elements. The second interactive force is a force due to numerical ‘‘bonds’’ and is only applied if two ele-
ments are labelled as ‘‘bonded.’’ When two elements are bonded, each element feels an attractive force that
prevents the elements from moving too far apart from one another. The details of the interactive forces are
provided in below.

2.2. Interactive Forces
The interactive forces in the model are used to (i) prevent the ice elements from overlapping and (ii) to con-
nect multiple ice elements together so that the collection of elements moves as a rigid body. Modeling the
collisions and movements of rigid objects precisely requires very small time steps and precise collision
detection algorithms, which are very computationally expensive. Models using these methods are typically
only run for a few days or even a few seconds, and are used to study rapid processes like crack formation or
ridging [Hopkins, 2004; Bassis and Jacobs, 2013; Rabatel et al., 2015]. The tabular iceberg framework pre-
sented in this study is developed in order to be used in general circulation models used for multiyear simu-
lations. In order to gain the required computational efficiency, we relax the requirement that icebergs must
be perfectly rigid and that ice elements cannot overlap. Instead, we model the interactive forces between
ice elements using damped elastic forces, which can be calculated more efficiently.

The total interactive force on an element is calculated by adding together the interactions with all other ele-
ments, such that the interactive force on element i, ð~F IAÞi is given by:

ð~F IAÞi5Rj 6¼ið~F IAÞij; (2)

where ð~F IAÞij is the force on element i by element j. Both bonded and repulsive interactions are modeled
using elastic stresses with frictional damping. The elastic component of the force is a function of the dis-
tance between the two elements, while the frictional damping force depends on the relative velocity of the
two elements.

To describe the forces between two elements, we begin by introducing some notation. Let ~xi ; ~xj be the
positions of elements i and j. The distance between elements i and j is

dij5j~xi 2~xj j: (3)

In calculations of the interactive forces between elements, the elements are assumed to be circular. We
define the interaction radius of an element by

Ri5

ffiffiffiffi
Ai

p

r
; (4)

where Ai is the planar surface area of element i. Using this, we define the critical-interactive-length scale,

Lij5Ri1Rj; (5)

which governs interactions between elements i and j. Repulsive forces are only applied when dij<Lij , while
for dij>Lij attractive bonded forces are applied when a bond exists between element i and j (see diagram in
Figure 3). The interactive forces are designed such that (in the absence of other external forces) bonded par-
ticles will settle in an equilibrium position where elements are separated by Lij.

To aid in notation, we define a bond matrix Bij such that Bij 5 1 if elements i and j are bonded together and
Bij 5 0 otherwise. Using this notation, the interactive force ð~F IAÞij on an element i by an element j is given by
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ð~F IAÞij5
ð~F eÞij1ð~F dÞij if ðdij � LijÞ or ðdij > Lij and Bij51Þ

0 if dij > Lij and Bij50:

(
(6)

ð~FeÞij and ð~Fd Þij are the elastic and frictional damping components of the interactive force between ele-
ments i and j. The elastic force ð~FeÞij between elements is given by

ð~FeÞij52jeðdij2LijÞMij~r ij; (7)

where~r ij5
ð~xi 2~xj Þ
j~xi 2~xj j is the directional unit vector between the position of element i and j, je is the spring con-

stant, and Mij is the minimum of the masses of elements i and j. The interactive forces obey Newton’s third
Law (i.e., ð~F IAÞij52ð~F IAÞji). The minimum mass, Mij, is preferred to the average mass, since this means that
for two bonded elements a fixed distance apart, the acceleration due to elastic forces is bounded, even
when the mass of one of the elements approaches zero.

The frictional damping force acts to dampen the relative motion of the two particles. If P~r ij
is the projection

matrix that projects onto~r ij , then the frictional damping force is given by

ð~Fd Þij52Mij crjjP~r ij
� ð~ui 2~uj Þ (8)

Here crjj is the drag coefficient damping motion parallel to~r ij . We set crjj52
ffiffiffiffiffi
je
p

, so that the elastic force par-
allel to~r ij is critically damped. The damping force is implemented using an implicit time stepping scheme,
to avoid stability issues for very small elements (details found in Appendix B).

Figure 4 illustrates the effectiveness of the repulsive forces in an uncoupled (ice-only) simulation. In this sim-
ulation, ice elements are forced westward into a bay, and eventually come to rest in the bay with a small
amount of overlap between elements. The amount of overlap between elements in the final state of the
simulation depends on the magnitude of the spring constant, je, with larger spring constants reducing the
amount of overlap. Increasing the spring constant also makes the system numerically stiff so that smaller
time steps are required to prevent numerical instabilities (the system is stable for time steps satisfying
dt2 < 4=je). A value of je51025 s22 is chosen that is large enough to prevent too much overlap between
elements for typical ocean forcings (e.g., Figure 4), and small enough to allow for time steps up to 10 min
(smaller time steps are used when the model is coupled to an ocean model).

Figure 5 illustrates the effectiveness of the numerical bonds in simulations of small icebergs (individual
unbonded elements) and large icebergs (constructed from many ice elements bonded together) forced to

Figure 3. Diagram showing the (a) repulsive and (b) attractive elastic interactive forces between two elements, i and j. Ri and Rj are the
interactive radii of element i and j, respectively. The distance between the centers of elements is denoted as dij. Lij5Ri1Rj is the critical-
interactive-length scale. ðFeÞij and ðFeÞji are the elastic forces applied to elements i and j, respectively (equation (7)). A frictional damping
force is also applied, which opposes the relative velocity of the elements (not shown). The attractive forces are only applied when the two
elements are bonded together (i.e., Bij 5 1).
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drift toward a convex coast line. When the tabular icebergs arrive at the coast, they bump into the coastline
and begin to rotate, influencing the paths of the other icebergs. This example illustrates an advantage of
using small elements bonded together to represent large-scale structure—i.e., rotational motion of large
structures can be simulated without explicitly accounting for the angular momentum of the elements (as
discussed in Jakobsen [2001]). Movies of these uncoupled simulations are found in supporting information
Movies S3 and S4.

2.3. Initializing Element Geometry and Packing
For purposes of initialization, we assume that elements have surface areas which are shaped as equally
sized regular hexagons (note that the elements are assumed to be circular for propose of interactions).
When packing elements together, the hexagonal elements are initially arranged in a staggered lattice, with
each element bonded to the adjacent elements (Figures 1 and 6a). In this arrangement, each element
(away from the edges) is bonded to six other elements. The bonds between elements form a pattern of
equilateral triangles, which gives rigidity to the larger structure. The circular shape of elements (used for
interactions) is inscribed within the hexagonal shape used for packing (Figure 6a). The centers of adjacent
elements are initially separated by a distance dij5Lij52Ap, where Ap is the length of the apothems of the
hexagons.

Some experiments were also performed using rectangular elements, arranged in a regular (nonstaggered)
lattice. In this case, each element forms four bonds with adjacent elements. However, the resultant struc-
tures were found to be much less rigid and tended to collapse when sufficient forces were applied. For this
reason, we only show the results using hexagonal elements.

Figure 4. Results of an uncoupled (ice-only) simulation with no bonds between ice elements. (top left) Ice elements are initialized through-
out the domain. The elements are forced by an imposed westward ocean current of u 5 0.1 m/s (no ocean model is used). Forces due to
sea surface slope, atmospheric drag, Coriolis, and sea-ice drag are set to zero. The figure shows snapshots of ice element positions at time
t 5 0, 17, 33 and 50 days. The size of the dots shows the surface area (and interaction radius) of each ice element. The white tails behind
the elements show the elements’ positions over the preceding two days. Land points are shown by black circles.
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Figure 5. Results of an uncoupled (ice-only) simulation using bonds between elements. (top left) Ice elements are initialized throughout
the domain. Three tabular icebergs are included, with 25, 16, and 4 elements, respectively. The elements are forced by an imposed west-
ward ocean current of u 5 0.1m/s (no ocean model is used). Forces due to sea surface slope, atmospheric drag, Coriolis, and sea-ice drag
are set to zero. The figure shows snapshots of ice element positions at time t 5 0, 25, 52, and 75 days. The size of the dots shows the sur-
face area (and interaction radius) of each ice element. The white tails behind the elements show the elements’ positions over the preced-
ing two days. Bonds between ice elements are plotted in magenta. Land points are shown by black circles.

Figure 6. (a) Ice element packing and geometry: ice elements (purple dots) are initialized in a staggered lattice. For purposes of mass aggregation, the ice elements are assumed to have
hexagonal shape (red hexagons). For purposes of element interactions, the ice elements are assumed to be circular (black circles). Elements are initially bonded to adjacent elements
using numerical bonds (magenta lines). (b) Intersection of an hexagonal element and the ocean grid. The colors indicate the fraction of the hexagon that lies in each grid cell. These frac-
tions are used as weights to spread the iceberg model properties to the ocean grid (see text for more details).
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2.4. Ice-Ocean Coupling
The KID model is coupled to the ocean model via a two-way synchronous coupling, meaning that ocean-
model fields are passed to the iceberg model, and iceberg model fields are passed back to the ocean model
at every time step. Passing fields between the two models involves interpolating the fields from the ocean
model’s Eulerian grid onto the iceberg model’s ‘‘Lagrangian grid’’ (i.e., onto the ice elements), and aggregat-
ing fields from the Lagrangian elements onto the ocean-model’s Eulerian grid.

The coupling from the ocean model to the iceberg model is straight forward: at every time step the top-of-
ocean temperature, salinity, velocity, and sea-ice concentration are passed from the ocean model to the ice-
berg model, to be used in the momentum and thermodynamic equations of the ice elements. Since tabular
icebergs are explicitly resolved in the ocean, it is sufficient for each element to interact with only the upper-
most ocean layer. This layer could be hundreds of meters below mean-global sea level if a large iceberg
was positioned above it. This means that there is no need to manually embed icebergs into the ocean by
integrating ocean fields over the icebergs’ thickness, as suggested in Merino et al [2016], or to integrate
ocean fields over an implied iceberg surface area, as suggested in Rackow et al [2017]. Within the iceberg
model, the ocean model fields are interpolated onto the Lagrangian grid using a bilinear interpolation
scheme.

The iceberg model influences the ocean by: (i) applying a pressure to the ocean surface, (ii) affecting the
upper ocean by applying a no-slip boundary condition and frictional velocity beneath the ice, and (iii)
imposing heat, salt, and mass fluxes on the ocean, associated with ice melting. Six fields are passed from
the iceberg model to the ocean model: ice mass, ice area, frictional velocity, and heat, salt, and mass fluxes.
Fields in the iceberg model are aggregated from the Lagrangian elements to the Eulerian ocean grid before
they are passed to the ocean model.

The aggregation of the iceberg-model fields onto the ocean grid is done in a way that is consistent with the
shape of the elements in the iceberg model (see section 2.3). Fields are ‘‘spread’’ to the ocean model grid by
exactly calculating what fraction of an element’s surface area lies in a particular grid box, and dividing the
field in proportion to this fraction. As an example, consider a hexagonal element in the iceberg model,
which is positioned such that it intersects four ocean grid cells (Figure 6b). In this situation, the element’s
mass (for example) is divided between these four ocean cells in proportion to the overlap area between the
hexagonal element and the grid cell (this fraction is shown by the colors in Figure 6b). An advantage of this
approach is that there are no jumps in pressure as an element moves from one grid cell to another, which
could trigger artificial tsunamis within the ocean model.

The numerical calculation of the intersection between hexagons and the ocean grid is simplified by dividing
the hexagon into six equilateral triangles. This method allows for the intersection to be found even when
the hexagon is not aligned with the grid.

The aggregation scheme is coded with the restriction that an element’s area can only intersect a maximum
of four ocean grid cells at a time. A consequence of this is that this sets a limit on the maximum size of ele-
ments that can be represented using this model, i.e., the longest horizontal dimension of an ice element
must be smaller than the ocean grid spacing. Larger ice structures are constructed by bonding together
smaller elements.

2.5. Melting Parameterization
The ice elements change their mass and size due to melting, which also affects the surrounding ocean
by changing its heat and salt content. In the model, these processes are parametrized in several ways. In
this section, we describe the melt parametrization for bonded, unbonded, and partially bonded
elements.

As mentioned above, ice elements which do not interact with other elements are modeled identically to
the point particle icebergs described in Martin and Adcroft [2010]. These elements melt according to three
semiempirical parametrization for melt commonly used in previous iceberg studies [Gladstone et al., 2001;
Martin and Adcroft, 2010]. Three types of iceberg melting are distinguished: basal melt, Mb, melt due to
wave erosion, Me and melt due to buoyant convection, Mv. The melt rates Me and Mv are applied to the sides
of the ice element, while Mb is applied at the ice element base. The details of Mb. Mv and Me are given in
Appendix A.
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When multiple elements are bonded together to form larger structures, it is no longer appropriate to use
the melt parameterizations developed for individual point-particle icebergs. An element which is
completely surrounded by other elements is meant to represent a column of ice in the middle of a large
structure, and hence will not experience melt at its sides due to wave erosion or buoyant convection. Also,
the iceberg basal melt rate Mb described above is based on boundary layer theory of flow past a finite plate,
and is only appropriate for basal surfaces where the distance from the leading edge is sufficiently small [Eck-
ert, 1950; Weeks and Campbell, 1973]. For an element in the interior of a large structure, the distance from
the edge of the structure is large, and so using Mb for the basal melt is not appropriate. Instead, the basal
melt Ms is determined using the three equation model for basal melt, which is a typical melting parametri-
zation used beneath ice shelves [Holland and Jenkins, 1999], and has been used to parametrize melt rates
beneath large icebergs in previous studies [Silva et al., 2006; Rackow et al., 2017].

When using both individual elements and bonded elements in the same simulation, we determine which
melt rate parameterizations to use based on the amount of bonds that each element has. An element in
the center of a large structure has the maximum number of bonds, while an unbonded element has no
bonds. If an element can have maximum number of bonds Nmax, and the number bonds that an element
has is Nb, then the fraction of the element’s perimeter surrounded by ocean (rather than by other ice ele-
ments) is estimated as �512 Nb

Nmax
. In this case, the element experiences side melt and bottom melt

Mside5�ðMv1MeÞ (9)

and

Mbottom5�Mb1ð12�ÞMs; (10)

respectively. In this way, elements with no bonds (i.e., �51Þ, melt like point-particle icebergs; elements at
the center of large structures (i.e., �50Þ melt-like ice shelves; and elements at the sides of large structures
have a combination of iceberg side and basal melt, and ice-shelf melt.

A similar procedure is used to allow elements at the edge of a large structure to experience partial side
drag and wave radiation forces, while for interior elements the side drag force is zero. Details are provided
in Appendix A.

2.6. Algorithms and Computational Efficiency
Including interactions between elements leads to an increase in the computational complexity of the
model. In this subsection, we comment on some of the algorithmic procedures that have been used to
increase the computational efficiency.
2.6.1. Interactions and Bonds
At every time step, we calculate the force on each element due to interactions with every other element.
This involves order N2 operations (for N elements), which becomes computationally expensive as N grows
large. We reduce the number of computations using a space-partitioning contact search where we leverage
the fact that each element only has repulsive interactions with elements that are less than one ocean grid
cell away, and each element only has bonded interactions with a small number of other elements.

The computation reduction is achieved by storing the element data in an efficient way that eliminates a
search through all element pairs to check if they are close to one another or are bonded with one another.
The data storage system is organized as follows: pointers to the memory structures containing each ele-
ment are stored in linked list data structures, which allow elements to be added and removed from the lists
easily without restructuring the entire list. Instead of using one list for all the elements on a processor (as
was done in the original code) [Martin and Adcroft, 2010], we use a separate linked list for each ocean grid
cell. When an element moves between ocean grid cells, it is removed from its original list and added to the
list corresponding to its new ocean grid cell. Since the area of elements has to be smaller than the area of
an ocean grid cell, the critical interaction length scale (equation (5)) is less than the size of a grid cell. This
means that elements only experience repulsive forces with other elements in the same ocean grid cell, or in
one of the eight adjacent cells. At each time step and for each element i, the code traverses the linked lists
of the nine surrounding grid cells, and applies a repulsive force if dij< Lij (whether the elements are bonded
or not). Limiting the possible repulsive interactions to elements in these nine linked lists substantially
reduces the computational time needed to calculate the total interactive forces.
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The attractive forces are computed in the following way. Each bond is assigned two pieces of memory (one
for each of the two elements involved in the bond). Each ice element contains a linked list of each of its
bonds (typically up to six bonds per element). At every time step, the code traverses the lists of bonded ele-
ments, and adds an attractive bonded force corresponding to these bonds if dij> Lij (the repulsive bonded
force to be applied when dij< Lij is already accounted for by the procedure outlined in the previous para-
graph). Having a list of bonds stored with each element reduces the computations needed for bonded
interactions from order N2 to order N. Computing attractive forces separately from the repulsive forces
allows us to avoid checking whether two elements are bonded, which further increases the computational
efficiency.
2.6.2. Parallelization and Halos
The iceberg model runs on multiple processors in parallel (using the same grid decomposition as the ocean
model). When elements move from an ocean cell on one processor to an ocean cell on a second processor,
the memory has to be passed from one processor to the next, added to and removed from the appropriate
lists, and the memory has to be allocated and deallocated correctly. Element interactions across the edge of
processors are handled using computational halos. A computational halo is a copy of the edge of one pro-
cessor which is appended to the edge of a second processor, so that the first processor can interact with
the second processor during a time step. Before each time step, elements at the edges of each processor
are copied onto the halos of adjacent processors so that they can be used in calculating the interactive
forces. After each time step, these halos are emptied, and the process is repeated. These halo updates are
one of the most computationally expensive parts of the iceberg model. Details of how the bonds are broken
and reconnected across processor boundaries are provided in Appendix C.
2.6.3. Time Stepping
The elements in the iceberg model are advected using a semi-implicit velocity Verlet time-stepping scheme.
The velocity Verlet time stepping scheme is commonly used in discrete element models in video games
because it is computational efficient and has desirable stability properties [Jakobsen, 2001]. This time step-
ping scheme was preferred to the Runge-Kutta 4, which was used in the iceberg model of Martin and
Adcroft [2010] since the Verlet time stepping only requires one calculation of the interactive forces once per
time step (while the Runge-Kutta scheme requires the interactive forces to be calculated four times). Since
the calculation of the interactive forces is one of the most computationally expensive part of the algorithm,
the Verlet scheme leads to a significant increase in the computational efficiency of the model. The Verlet
scheme used in the model contains a modification of the original (fully explicit) velocity Verlet time step-
ping scheme in that damping terms are treated implicitly (which increases the numerical stability). The
details of this adapted time stepping schemed are outlined in Appendix B.

3. Experiment Setup

The introduction of Lagrangian elements, numerical bonds, and interpolation schemes between the Euler-
ian and Lagrangian grids (discussed in section 2) means that we now have the tools to model large tabular
icebergs submerged in the ocean. We demonstrate this capability by simulating a tabular iceberg drifting
away from an ice shelf in an idealized setting.

3.1. Model Configuration
We use the geometric setup of the Marine Ice Ocean Modeling Inter-comparison Project (MISOMIP) [Asay-
Davis et al., 2016]. The configuration consists of an idealized ice shelf in a rectangular domain. The domain
is Lx 5 80 km wide and Ly 5 480 km long, and contains an ice shelf which is grounded on the south side of
the domain and has an ice front at y 5 650 km. The ice thickness and bottom topography of this setup are
shown in Figures 7a and 7c respectively, with the grounding line position drawn in for reference. The con-
figuration is the same as that of the Ocean0 setup in the MISOMIP, with a few minor changes to the ice-
shelf geometry (see the supporting information for details).

3.2. Initializing Lagrangian Elements
The idealized ice shelf is constructed out of Lagrangian ice elements. Ice elements are hexagonal and are
arranged in a regular staggered lattice (as discussed in section 2.3). The sides of the hexagons are initialized
with length S 5 0.98 km. Gaps along the boundaries of the domain are filled in using smaller elements so
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that the total ice-shelf area is preserved. These smaller elements are held stationary throughout the simula-
tions, and are not bonded to other elements.

The initial masses of the ice elements are calculated from the gridded ice thickness field using bilinear inter-
polation, assuming a constant ice density q5918 kg=m3. When the model runs, the mass of elements is
aggregated from the Lagrangian elements onto the Eulerian ocean grid (see section 2.3), and is used to find
the surface pressure and ice draft (part of an ice column submerged into the ocean). The ice draft calculated
without the aggregation (treating elements as point masses) contains large resolution-dependent grid
artifacts (Figures 7b). These grid artifacts are much reduced after the mass-spreading aggregation is used
(Figure 7c).

3.3. Ocean Model Setup
The KID model is coupled to the MOM6 ocean model [Hallberg et al., 2013]. The ocean model configura-
tion uses a vertical coordinate system which is a hybrid between a sigma-level and a z-level coordinate. In
particular, model layers deform underneath the ice shelf as they would in a sigma-coordinate model, but
collapse to zero thickness when they intersect with bottom topography, as they would in a z-level model.
The coordinate system was achieved using the ALE regridding-remapping scheme [White et al., 2009].
The model uses a horizontal resolution of 2 km, and 72 vertical layers. All simulations were repeated using
the ocean model configured in isopycnal mode (results were similar and are not presented here).

Ocean parameters are as specified in the MISOMIP configuration [Asay-Davis et al., 2016], and are shown in
Table 1. The simulation is initially at rest, with horizontally uniform initial ocean temperature and salinity
profiles which vary linearly between specified surface and bottom values: Ttop521:9

�
C, Tbottom51:0

�
C, Stop

533:8 psu, Sbottom534:7 psu. The maximum ocean depth is Hocean5720 m. A sponge layer is used on the
northern boundary of the domain, which relaxes the temperature and salinity back to the initial

Figure 7. (a) Ocean bottom topography and (c) ice-shelf draft used to initialized the tabular iceberg calving simulation. The ice draft is calculated from the total mass in an ocean grid
cell after the mass-spreading interpolation has been applied (as explained in section 2.3). (b) The initial ice draft that would be calculated if the mass-spreading interpolation were not
used (i.e., elements treated as point masses). The lower and upper black lines denote the grounding line and ice shelf front, respectively.
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temperature and salinity profile. The sponge layer has length Lsponge 5 10 km, and has a relaxation time
scale parameter Tsponge50:1 days at the northern boundary. The inverse of the relaxation time scale param-
eter drops linearly to zero over the length of the sponge layer. Melting is set to zero for ocean cells where
the ocean column thickness is less than 10 m to avoid using more energy to melt ice than is present in the
water column.

3.4. Spin-Up Period
The model is spun up for 5 years with all ice elements being fixed. During spin-up, the injection of buoyant
meltwater at the base of the ice shelf drives a clockwise circulation within the domain (not shown). The cir-
culation compares well with an identical static ice-shelf experiment run using an Eulerian ice-shelf model
[Goldberg et al., 2012]. A detailed comparison of the Lagrangian and Eulerian ice-shelf models will be pre-
sented in a separate study, and is not shown here.

3.5. Iceberg Calving
After spin-up, a large tabular iceberg detaches from the ice shelf, and is allowed to drift into the open
ocean. Since the focus of this study is on developing a framework for modeling tabular icebergs, we bypass
the question of how to prescribe a physical calving law [Benn et al., 2007; Alley et al., 2008; Levermann et al.,
2012; Bassis and Jacobs, 2013] by manually breaking off a semicircular iceberg. This is achieved by allowing
all ice elements initially within a 14.4 km radius of the center of the ice front to move freely while the other
ice elements continue to be held stationary. Ice elements less than 12 km from the center of the ice front,
are bonded together to form a semicircular tabular iceberg. A ring of elements whose distance, d, from the
ice front center obeys 12 km � d � 14:4 km, are allowed to move freely, but have all their bonds removed.
Elements in this half annulus represent fragments of the ice shelf which calve into small pieces during the
calving event.

After the spin-up period, a wind stress~s5 < sx ; sy > 5 < 0:05; 0:05 > N
m2 is applied to drive the tabular ice-

berg away from the ice-shelf cavity. This is referred to as the Control simulation. Perturbation experiments
were also performed using other wind stress values. Further perturbation experiments were performed by
breaking some numerical bonds in order to break the tabular iceberg into smaller pieces.

4. Model Results

After spin-up of the Control simulation, the elements near the ice-shelf front are allowed to move freely,
and the icebergs begin to drift away from the ice shelf while fully submerged in the ocean (see Figures 2
and 8, and the supporting information Movie S1). At this point, the iceberg model and the ocean model are
fully coupled: changes to the iceberg position alter the top-of-ocean pressure and dynamical boundary con-
dition; and changes to the iceberg melt rates alter the top-of-ocean temperature, salt, and mass fluxes.

Table 1. Parameters Used in the Modela

Parameter Symbol Value Unit

Domain length Lx 80 km
Domain width Ly 480 km
Horizontal resolution Dx 2 km
Number of vertical layers Nl 72 Nondimensional
Horizontal viscosity mH 6.0 m2 s21

Diapycnal viscosity mV 1023 m2 s21

Horizontal diffusivity �H 1.0 m2 s21

Diapycnal diffusivity �V 531025 m2 s21

Initial surface temperature Tt 21.9 8C
Initial bottom temperature Tb 1.0 8C
Initial surface salinity St 33.8 psu
Initial bottom salinity Sb 34.7 psu
Maximum ocean depth Hocean 720 m
Relaxation time of sponge layer Tsponge 0.1 Days
Length of sponge layer Lsponge 10 km
Ocean and iceberg model time step dt 10 s
Elastic interactive force spring constant je 1025 s22

aThe ocean model parameters are as described in Asay-Davis et al [2016].
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These changing ocean boundary conditions influence the ocean by triggering gravity waves, driving surface
mixing, and affecting the ocean stratification. The evolving ocean velocities, temperatures, and salinities
feedback onto the ice elements by changing the force balance on the ice elements (leading to changes in
the elements’ position), and altering the melt rates. The various feedbacks within this coupled system offer
many opportunities for the model to become unstable. The fact that the model is stable and that we are
able to simulate tabular icebergs moving in the ocean without the model crashing and introducing artificial
effects like tsunamis is a nontrivial technical milestone.

4.1. Iceberg Motion
In the Control simulation, the semicircular tabular iceberg moves as a cohesive unit due to the presence of
the numerical bonds, while the smaller ice fragments quickly disperse (Figure 2). The tabular iceberg drifts
toward the north east, driven by the wind, and steered by the Coriolis force. As the tabular iceberg drifts
northwards, it rotates in a counterclockwise direction (the direction of the Coriolis force in the Southern
Hemisphere), and makes contact with the eastern boundary of the domain, before continuing northward.
Most of the smaller ice fragments also move to the northeast, but not as a cohesive unit. Some of these ele-
ments also move to other parts of the domain.

The direction (and speed) of the iceberg drift is largely determined by the wind speed and direction. Pertur-
bation experiments using different wind stresses show that for sufficiently large winds, the tabular iceberg
drifts to the north east when sx > 0, and to the north west when sx < 0 (not shown). For a purely zonal
wind stress with jsx j � 0:01 N

m2, the iceberg does not move away from the ice shelf. When the wind is purely
offshore (sx50:0 N

m2), a meridional wind stress sy � 0:05 N
m2 is needed to move the tabular iceberg away from

the ice shelf. While this result is partly an artifact of the chosen shape of the calving iceberg, it is also

Figure 8. Snapshots of vertical sections of ocean temperature at x 5 54 km in the tabular-iceberg-calving Control experiment. Snapshots
are taken (a) 7, (b) 15, and (c) 50 days after calving. The position of the vertical transects is shown by the dashed lines in Figure 2c.
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consistent with Bassis and Jacobs [2013] who noted that calving is a two-step process consisting of (i) ice-
shelf rifting that forms an iceberg and (ii) iceberg detachment. The results here suggest that strong (cross-
shore) winds may be required to drive large tabular icebergs away from their source ice shelves.

4.2. Breaking Bonds
The numerical bonds in the iceberg model enable the tabular iceberg to retain its shape. This is demon-
strated by comparing the Control simulation to an identical simulation where all numerical bonds have
been removed (Figure 9, supporting information Movie S5). In the bond-free simulation, the ice elements
disperse and the calved iceberg quickly loses its original structure. This bond-free simulation does not ade-
quately represent the tabular iceberg, since a tabular iceberg needs to be able to move long distances
through the ocean as a cohesive unit. This result motivates the inclusion of bonds in the iceberg model,
even though they are more computationally expensive than traditional point-iceberg models.

By breaking some (but not all) numerical bonds, we can simulate breaking of tabular icebergs into smaller
pieces. Figure 10 shows the results of an experiment which is identical to the Control experiment, except
that all numerical bonds that intersect the line x5 Lx

2 have also been severed. This effectively cuts the large
tabular iceberg into two halves. As the icebergs drift northward, the two halves of the tabular iceberg each
move as a cohesive unit, but they are able to move independently of one other (Figure 10, supporting infor-
mation Movie S2). The two large fragments initially move together, but begin to separate after a few days.
The breaking of a tabular iceberg has the additional effect of increasing the total surface area of ice exposed
to the ocean, thus increasing the total decay rate of the icebergs.

4.3. Ocean Response
Since the tabular iceberg is submerged in the ocean, the iceberg calving and drift affects the surrounding
ocean. In the Control simulation, as the tabular iceberg drifts northward a warming of the surface waters is

Figure 9. No bonds simulation: Snapshots of the sea surface temperature for a simulation where all bonds have been broken. Snapshots are taken (a) 7, (b) 15, and (c) 50 days after calv-
ing. Grid cells with ice mass >104 kg are plotted in white, with grey shading indicating thinner ice.
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observed around the tabular iceberg, with the largest warming occurring at the ice-shelf front and along
the tabular iceberg’s rounded edge (Figure 2). This surface warming is caused by upwelling of the warmer
waters from beneath the ice shelf and iceberg. As the iceberg drifts away from the ice shelf, these warmer
waters remain at the surface, mapping out the iceberg wake (Figure 2). The motion of the tabular iceberg
disturbs the ocean surface, which affects ocean velocities throughout the water column (Figure 11). The ele-
vated shears around the tabular iceberg lead to increased vertical mixing in the vicinity of the iceberg,
which alters the stratification of the water column (Figure 8) warming the upper ocean. The signature of
upwelling water in the wake of a drifting tabular iceberg bears some similarity to satellite observations of
streaks of increased ocean color in the wake of tabular iceberg in the Southern Ocean [Duprat et al., 2016],
suggesting that the increased productivity around icebergs may be driven by upwelling water delivering
nutrients to the surface.

The surface warming and increased ocean mixing observed around the iceberg are in contrast to the cool-
ing of the ocean surface and increased stratification reported around melting icebergs in previous modeling
studies using point-particle icebergs [Martin and Adcroft, 2010; Stern et al., 2016; Marsh et al., 2015]. This dif-
ference results from the fact that in our model the iceberg is submerged in the ocean and extends across
an area covering multiple grid cells. This allows the ocean circulation below the iceberg to be resolved, and
in this case, for upwelling to occur which warms the ocean surface. In contrast, levitating point-particle ice-
berg models used in global climate simulation do not resolve the flow beneath the icebergs. In these mod-
els, the icebergs only influence the ocean via surface freshwater fluxes (applied at a single point), which
cool and stratify the ocean mixed layer. In general the sea surface temperature response to the presence of
an iceberg submerged in the water column will likely depend on multiple factors such as the ambient strati-
fication around the iceberg, the amount of melting beneath the iceberg, the amount of entrainment into
the iceberg meltwater plume, the geometry of the iceberg, local winds, topography and ocean currents,

Figure 10. Iceberg splitting simulation: Snapshots of the sea surface temperature for the iceberg splitting simulation. Snapshots are taken (a) 7, (b) 15, and (c) 50 days after calving. Grid
cells with ice mass >104 kg are plotted in white, with grey shading indicating thinner ice.
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and the relative motion of the iceberg and the ocean. Further work is required to determine whether the
presence of tabular icebergs in the Southern Ocean leads to a net warming or cooling of the ocean surface.
This result could have important implications, since the warming/cooling of surface waters around icebergs
can lead to large-scale changes to sea-ice concentrations and dense-water production [Stern et al., 2016].

4.4. Iceberg Melt Rates
The increased subsurface velocities and temperatures cause elevated melt rates at the base of the ice shelf
and iceberg (Figure 12). The largest melt rates are observed at the newly calved ice-shelf front and on the
rounded side of the tabular iceberg (Figure 12a), where the iceberg calving has created steep ice cliffs.
These sharp ice fronts allow for large ocean currents (Figure 12c), which drive the elevated melt rates. The
elevated melt rates act to smooth out the ice front over time, making the ice cliff less steep. While this is
likely a real phenomenon that could be observed in nature, we should be wary of the modeled velocities at
the ice cliffs, since large changes in ice thicknesses are associated with numerical pressure gradient errors
which can drive spurious motion.

The large melt rates along the ice edges are also partly driven by the fact that different melt parametrization
are used in the interior and edges of large ice structures (see section 2.5). Figure 13 shows the melt rates
computed with (a) the three-equation-model parametrization [Holland and Jenkins, 1999], (b) point-particle-
iceberg-melt parametrization [Gladstone et al., 2001], and (c) the mixed-melt-rate parametrization (intro-
duced in section 2.5). The three-equation-model melt rates (Figure 13a) are less than a third of the size of
those calculated using the point-particle-iceberg-melt parametrization (Figure 13b). The point-particle-
iceberg-melt is dominated by the wave erosion term, which is an order of magnitude larger than the basal

Figure 11. Snapshots of vertical sections of meridional velocity at x 5 54 km in the tabular-iceberg-calving Control experiment. Snapshots
are taken (a) 7, (b) 15, and (c) 50 days after calving. The position of the transects are shown by the dashed line in Figure 2c.
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melt. When the mixed-melt-rate parametrization is used (Figure 13c), the very high melt rates are only
observed at the edges of ice structures.

5. Summary

In this study, we present a novel framework for simulating tabular icebergs in ocean models, and representing
icebergs with finite extent and structure submerged in the ocean. In this framework, large tabular icebergs
are represented by collections of Lagrangian elements that are held together by numerical bonds. Each ice
element is assigned a surface area and shape, and can interact with the ocean and other elements in a way
which is consistent with the shape of the element. Such a representation allows tabular icebergs to interact
with the ocean across a wide area (larger than a grid cell), and individual ice elements to behave as if they
had a finite extent. This is in contrast to previous representations of icebergs in numerical models [Jongma
et al., 2009; Martin and Adcroft, 2010; Marsh et al., 2015] that treat icebergs as point particles. Assigning a finite
extent to elements prevents icebergs from piling up on top of one another, which has been an issue for previ-
ous point-particle iceberg models. Explicitly resolving tabular icebergs in the ocean allows the icebergs to
apply pressure to the ocean surface and thus to interact with the ocean in a more realistic way, and allows us
to study the effects that tabular icebergs have on ocean circulation. Including numerical bonds between ele-
ments allows for simulations which emulate iceberg calving and fracture by severing the bonds.

The capabilities of the tabular iceberg model are demonstrated by modeling a tabular iceberg drifting away
from an idealized ice shelf (also constructed using Lagrangian elements). The results show that explicitly
resolving tabular icebergs in the ocean allows for a complex interaction between the iceberg and the sur-
rounding ocean. In our Control setup, a tabular iceberg is driven away from the ice shelf by ocean currents,

Figure 12. Results of the tabular-iceberg-calving experiment 50 days after the iceberg calves. The three plots show snapshots of the (a) melt rate, (b) top-of-ocean temperature, and (c)
the frictional velocity, u� , at the base of the ice shelf. Ocean grid cells without ice are masked out in grey.
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wind stress, and the Coriolis force. As the iceberg moves through the water, it disturbs the ocean surface,
driving ocean currents. The motion of the iceberg and melt beneath the iceberg drive upwelling along the
sides of the iceberg, which entrains ambient water and causes a warming of the surface ocean in the wake
of the iceberg. The changing ocean conditions feed back onto the iceberg, affecting its motion and melt
rates. The highest melt rates are observed at the edge of the iceberg which has the steepest ice cliff. These
have the effect of smoothing out the ice edge over time. Simulations without using numerical bonds show
that the bonds are essential for allowing the iceberg to move as a unit. We also demonstrate that by break-
ing these numerical bonds we can simulate iceberg fracture, which is an important process that increases
the rate of iceberg decay.

To our knowledge, the model presented in this study is the first model to explicitly resolve drifting tabular
icebergs in an ocean model that can be used for climate studies. A natural extension of this work is a repre-
sentation of tabular icebergs in a general circulation model (GCM). However, before this can be done, there
are a number of issues that need to be resolved: first, the question of how and when to introduce tabular
icebergs into the ocean needs to be addressed [Stern et al., 2016]. For GCMs with active ice shelves, a calv-
ing law is needed to release the tabular iceberg into the ocean. The question of what calving law to use is a
topic of ongoing research [Benn et al., 2007; Alley et al., 2008; Levermann et al., 2012; Bassis and Jacobs,
2013] and is still unresolved. One potential way to temporarily bypass this problem would be to run hind-
cast simulations using historically observed calving events. A related issue is the question of how and when
to break the bonds within the freely floating icebergs to simulate iceberg breakup. Without a rule for ice-
berg breakup, the tabular icebergs would likely drift to unrealistically low latitudes. Further work is also
needed to understand (and model) the interactions between tabular icebergs and sea ice, and to parame-
trize the effects of iceberg grounding, as these interactions play a large role in dictating the trajectories of

Figure 13. Results of three iceberg-calving experiments using different melt-rate parametrization. Plots show snapshots of the melt rate 30 days after calving for simulations using the
(a) three-equation-model melt-rate parametrization [Holland and Jenkins, 1999], (b) point-particle-iceberg-melt parametrization [Gladstone et al, 2001], and (c) the mixed-melt-rate param-
etrization (introduced in section 2.5.). Ocean grid cells without ice are masked out in grey.
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tabular icebergs. However, despite these remaining challenges, the technical framework described in this
article is potentially a useful step towards including tabular icebergs in global GCMs.

Appendix A: Iceberg Model Details

A1. Environmental Forces on Ice Elements

The noninteractive forces on an ice element are as described in Martin and Adcroft [2010], with a small
modification to drag forces and wave radiation force, included to account for elements which are part
of larger ice structures, and have a reduced surface area exposed to the ocean. When modeling the
momentum balance, the elements are assumed to be cuboids with time-evolving lengths, widths, and
thicknesses. The length L and width W of an element are initially set to L5W5

ffiffiffiffiffi
As
p

, and thereafter
evolve dynamically. As is the planar surface area of the element. The cuboid shape is used so that the
momentum balance of unbonded elements is exactly as described in Martin and Adcroft [2010]. The mis-
match between the cuboid shape used in the momentum balance and the hexagonal shape used for
spreading mass onto the ocean grid introduces a small error. This error is likely to be small compared
to the uncertainty in the drag coefficients, melt parametrization, and other uncertainties built into an
iceberg model.

The forces on an element due to air (a), ocean (o), and sea ice (si) drag are given by

ð~F aÞ5qað0:5ca;v WF1�ca;hLWÞj~ua2~ujð~ua2~uÞ; (A1)

ð~F oÞ5qoð0:5co;v WðD2TsiÞ1�co;hLWÞj~uo2~ujð~uo2~uÞ; (A2)

ð~F siÞ5qsið0:5csi;v WTsi F1�csi;hLWÞj~usi2~ujð~usi2~uÞ: (A3)

Here qa, qo, and qsi, are the density of air, ocean, and sea ice, respectively. ca;v ; co;v , and csi;v are the vertical
drag coefficients with air, ocean, and sea ice, while ca;h; co;h and csi;h are the respective horizontal drag coef-
ficients.~ua; ~uo; ~usi , are the velocities of air, ocean, and sea ice, respectively. L, W, T, F, and D are the length,
width, thickness, freeboard, and draft of the ice element. L and W are defined such that L � W . The element
thickness is related to the draft and freeboard by T5F1D and D5 q

qo
T , where q is the ice element density.

Tsi is the sea-ice thickness. As discussed in section 2.5, � is the fraction of an element’s perimeter surrounded
by ocean, and is given by �512 Nb

Nmax
, where Nmax is the maximum number of bonds that an element form,

and Nb is the number of bonds that the element forms.

The wave radiation force ð~F RÞ is given by

~F R5�qocr ga
WL

W1L

~ua

j~uaj
minða; FÞ (A4)

where g is the acceleration due to gravity, a is the wave amplitude empirically related to the wind speed by
a50:010125j~ua2~uoj, and cr is the wave drag coefficient defined as

cr50:06 min max 0;
L2Lc

Lt2Lc

� �
; 1

� �
; (A5)

where Lw50:32j~ua2~uoj2 is an empirical wave length, Lc50:125Lw is the cutoff length, and Lt50:25Lw is the
upper limit.

The pressure gradient force is approximated as a force due to sea surface slope and given by

~F SS52Mg ~rg (A6)

where g is the sea surface height.

A parametrization for iceberg capsizing is applied for tall narrow ice elements. Elements capsize when the
ratio W

H <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6að12aÞ

p
, where a5 q

qo
. [Wagner et al., 2017]. When this occurs, W and H are instantaneously

swapped. The iceberg capsizing parametrization used here is different from the one described in Martin
and Adcroft [2010], which was found to be inappropriate for modeling icebergs with evolving dimensions
[Wagner et al., 2017]. In our model, capsizing is only permitted for unbonded elements.
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A2. Melt Rate Parametrization

As discussed in section 2.5, unbounded ice elements in the iceberg model decay according to parameteriza-
tions for iceberg decay typically used in iceberg drift models [Martin and Adcroft, 2010], while ice elements
within larger ice structures have only a basal melt given by the three equation model [Holland and Jenkins,
1999]. For the purposes of applying melt rates, we again assume that the elements are cuboids with time-
evolving lengths, widths, and thicknesses, as discussed in the previous subsection above.

For unbonded ice elements, the element thickness decays due to basal melt at a rate Mb, while the length
and width of the elements decay as a result of wave erosion, Me, and melt due to buoyant convection, Mv.
Following Gladstone et al. [2001] and Martin and Adcroft [2010], the basal melt rate, the ‘‘melt’’ due to wave
erosion, and buoyant convection melt rate are parameterized by

Mb50:58j~u2~uoj0:8
~T o2~T

L0:2
(A7)

Me5
1

12
Ssð11cos ½pA3

i 	Þð~T o12Þ; (A8)

Mv5ð7:6231023Þ~T o1ð1:2931023Þ~T 2
o: (A9)

~T is the effective iceberg temperature and is set to ~T 524
�

C, ~T o is the temperature at the top of the ocean,
Ai is the sea-ice area fraction, and Ss is the sea state, which is given by the Beaufort scale

Ss5
2
3
j~ua2~uoj

1
21

1
10
j~ua2~uoj (A10)

All three melt rates are in units of meters per day.

For elements inside larger structures, the melt due to wave erosion and melt due to buoyant convection
are set to zero, and the basal melt, Ms, is given by the standard three equation model [Holland and Jenkins,
1999]: neglecting the heat flux in the ice, the heat flux balance, salt flux balance, and freezing point con-
straint at the ice-ocean interface can be expressed as

LMs5cpocT j~uo2~ujðTo2TbÞ; (A11)

SbMs5cSj~uo2~ujðSo2SbÞ (A12)

and

f ðSb ; Tb ; pbÞ50: (A13)

Here To and So are the boundary-layer temperature and salinity below the ice; Tb, Sb, and pb are the temper-
ature, salinity, and pressure at the ice-ocean interface. cpo53974 J kg21 �

C21 is the specific heat of water,
and L53:353105 J kg21 is the latent heat of ice fusion. cT and cS are the coefficients representing the trans-
fer of heat and salt through the boundary layer. The specific formulation of cT and cS can be found in Hol-
land and Jenkins [1999]. The final equation is a constraint imposed by the equation of state, which relates
the pressure-dependent freezing temperature and salinity at the ice-ocean interface. The basal melt rate Ms

is found by numerically solving this system of three equations.

Appendix B: Numerical Methods

B1. Modified Verlet Algorithm

The model uses a version velocity Verlet time-stepping algorithm, which has been modified to allow part of
the forcing to be calculated implicitly. The traditional velocity Verlet algorithm is commonly used in molecu-
lar dynamics, as it is simple to implement, second-order accurate and computationally efficient [Swope
et al., 1982; Omelyan et al., 2002]. Here we modify the traditional scheme to allow for the drag forces to be
modeled implicitly, which prevents large accelerations for elements whose mass approaches zero. To do
this, we include both an implicit and explicit acceleration, ~a5~aexp

1~a imp. The explicit acceleration, ~aexp,
includes all forcing terms which depend only on the previous time step and the current position, while the
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implicit acceleration,~a imp, includes forcing terms which depend on the velocity at the current time step (in
particular the drag and Coriolis forces).

Using a time step of Dt, and subscripts to denote the time step (so that tn115tn1Dt), the modified velocity
Verlet scheme can be written as:

1. Calculate updated position:~x n115~x n1~unDt1 Dt2

2 ð~a
exp
n 1~a imp

n Þ.
2. Calculate~aexp

n11

3. Calculate~a imp
n11 and~un115~un1 Dt

2 ð~a
exp
n 1~aexp

n11Þ1ðDtÞ~a imp
n11

This scheme reduces to the traditional velocity Verlet when~a imp is set to zero. Note that~aexp
n115~aexp

n11ð~x n11; tnÞ
is an explicit function of~x n11 and other quantities evaluated at time tn, while~a imp

n115~a imp
n11ð~un11;~x n11; tnÞ addi-

tionally depends on un11, and needs to be solved implicitly. For this reason in step three,~a imp
n11 and~un11 need

to be solved simultaneously, as described in the next subsection.

In equation (1), the forces due to ocean drag, atmospheric drag, and sea ice drag are treated implicitly. The
force due to sea surface slope and wave radiation are treated explicitly. The Coriolis term is handled using
the Crank-Nicolson scheme so that half of the effect is implicit and half is explicit. The elastic part of the
interactive forces is treated explicitly, while the interactive damping is handled semi-implicitly in that the
drag force on element A by element B depends on the velocities of elements A and B evaluated at time
tn11 and tn, respectively.

B2. Solving for the Velocity Implicitly

Since this modified scheme contains some forcing terms which are handled implicitly, ~a imp
n11 and

~un11 need to be calculated simultaneously. We demonstrate how this is done, using a simplified
one-dimensional version of equation (1), neglecting the atmospheric drag, sea-ice drag and Coriolis
force, so that the only implicitly treated term is the ocean drag. In this demonstration, we use a
superscript to denote the ocean drag force, Fo, and ocean velocity, uo, to avoid confusion with the
subscripts indicating time step. We also define an explicit force, Fexp, which accounts for all forces
not proportional to the element velocity. With these simplifications, the implicit and explicit acceler-
ations are

aexp5
1
M
ðFexpÞ (B1)

aimp5
1
M
ðFoÞ (B2)

The ocean drag force at time tn11 is modeled (mostly) implicitly as

Fo
n115~c ojuo

n2unjðuo
n2un11Þ; (B3)

where ~c o is the effective drag coefficient, accounting for the dimensions of the ice element (see equation
(A2)).

Step 3 of the modified velocity Verlet scheme can be rewritten by introducing an intermediate velocity u�,
which only depends on the velocity and acceleration at time tn,

u�n5un1
1
2
ðDtÞaexp

n : (B4)

Using this, the updated velocity (Step 3) can be written

un115u�n1
Dt
2

aexp
n111ðDtÞaimp

n11: (B5)

Including the forcing terms into this equations gives

un115u�n1
Dt
2M
ðFexp

n11Þ1
Dt
M
ðcw juo

n2unjðuo
n2un11ÞÞ (B6)

Solving for uðtn11Þ in terms of quantities which only depend on the previous time step gives
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un115
u�n1 Dt

2M ðF
exp
n11Þ1 Dt

M ðcw juo
n2unjðuo

nÞÞ
ð11 Dt

M cw juo
n2unjÞ

(B7)

Recall that Fexp
n11 is an explicit function of xn11 and other quantities evaluated at tn, which are already known

at this point. Once the un11 has been found, it can be used to calculate the explicit and implicit accelera-
tions, which are required for the next time step.

Finally, we note that the drag term (equation (B3)) is not entirely implicit, since the element velocity inside
the absolute value is evaluated at time tn, rather than at time tn11. This is done so that we can solve for the
updated velocity analytically. One consequence of this is that it can give rise to a small oscillation in the ele-
ment velocity. This oscillation is addressed by using a predictive corrective scheme: after solving for a first
guess of the velocity at time tn11, this estimate of the velocity is used to update the estimate of the drag
force (i.e., inside the absolute value signs). This updated drag can now be used to repeat the process
described above to find an improved estimate of the velocity. We found that two iterations were sufficient
to remove the unwanted oscillation.

The procedure described in this section is easily extended to include more forcing terms and two dimen-
sions (where it involves inverting a 2 3 2 matrix).

Appendix C: Connecting bonds across processor boundaries

Since the model is parallelized across multiple distributed-memory processors, it often happens that two
elements on different processes are bonded together. Keeping track of numerical bonds across processor
boundaries requires a lot of book keeping. In this section, we describe how the model handles bonds across
processor boundaries.

The basics of the bond bookkeeping work as follows: consider an element A and an element B that are
bonded together. Each element has a copy of the bond (a piece of memory which describes the bond
between the two elements), which is stored with the element. Let A-B be the bond stored by element A,
and B-A be the bond stored by element B. Bond A-B contains a pointer which points to element B and
bond B-A contains a pointer which points to element A.

Consider a situation where element A and B are originally on Processor 1, and then element B moves to Pro-
cessor 2. When this occurs, the memory assigned to element B on processor 1 is removed, and is allocated
on Processor 2. This means that the pointer to element B in bond A-B (stored in element A on Processor 1)
is no longer assigned. Similarly, the pointer to element A in bond B-A (stored in element B on Processor 2)
is no longer assigned. Before the next time step, a halo update occurs, so that the there is a copy of element
A in the halo of Processor 2 and a copy of element B in the halo of Processor 1. After the halo update, the
bonds A-B and B-A have to be reconnected on both Processor 1 and 2. To aid in reconnecting the bonds, a
copy of the grid cell number of element B is stored in the bond A-B and a copy of the grid cell number of
element A is stored in the bond B-A. We refer to this as the ‘‘most recent address.’’ Before a bond is moved
from one processor to another, the ‘‘most recent address’’ is updated, so that the bond can be reconnected
later. To reconnect bond A-B on Processor 1 (for example), we find the most recent address of element B,
and search through the list of elements in the grid cell corresponding to the most recent address of ele-
ment B until element B is found. The pointer to element B in bond A-B is reassigned, and the bond is said to
be connected.
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